首页  >  媒体动态  >  媒体动态详情

邬贺铨院士作序,2024 AIGC应用层十大趋势来了

2024-01-03   中国科学报   阅读量:548

    文 |《中国科学报》记者 赵广立

    编者按

    从年初“火”到年尾,大模型让人们看到了通用人工智能(AGI)的一缕曙光。2023年,人工智能生成内容(AIGC)作为大模型应用场景之一,在短时间里完成了从简单的“Chat”到“Work”再到服务业务场景、推动产业变革的“三级跳”。

    人们生产生活的高度数智化,驱动着对“AI还能做什么”的探索不会止步。进入2024年,AIGC将会在哪些场景下“变”出哪些新花样?为此,阿里钉钉(Ding Talk)联合国际数据公司(IDC)做了大量调研,共同发布了这份《2024 AIGC应用层十大趋势》白皮书。

    IDC预测,2023年全球企业将在生成式AI解决方案上投资超过160亿美元,而到2027年底这一数字将“膨胀”近10倍,年复合增长率超过70%。诚如中国工程院院士邬贺铨在上述白皮书的序言中所说:“我们将看到AI越来越多的创新应用场景和产品形态不断涌现。”

    2024年,AIGC的应用将带给人们哪些惊喜?将呈现出何种趋势?我们一睹为快。

图片

    趋势一

    围绕AIGC的应用层创新具有确定性,将成就一批创企

    IDC认为,2024年,AIGC必然会通过应用创新过程融入到企业业务中,并构建出大量的新场景;同时,AIGC也会借助应用价值链的延伸,改变行业运行业态,对商业模式和利益格局产生深远影响。

    因此,围绕AIGC的应用层创新将成就一大批未来创新型企业,应用层创新将成为2024 AIGC产业发展的确定方向。


    IDC就AIGC应用对诸多行业用户展开调研,所有受访企业均表示或多或少都开始了对AIGC相关应用的投入与尝试。


    一方面,在即将到来的通用人工智能时代,智能化应用将出现爆发式增长的态势,无处不在的应用开发有助于企业以业务场景为切入点快速满足智能创新需求。


    IDC预测,到2024年,数字经济的发展将在全球范围内孕育出超过5亿个新应用,相当于过去40年间出现的应用数量的总和。


    另一方面,随着通用智能化能力的实践推广,AIGC会优先在企业端用户中实现场景的落地,企业首先考虑的将会是与生产力和办公相关的场景。


    与此相对应地,面向消费端用户推出的AIGC应用往往结合着对商业模式的探索和对市场教育的投入,这会延长其构建商业闭环的时间周期。

图片

最有希望被企业采用的AIGC应用场景

    对于一大批AI技术实践的创新型企业而言,找准落地场景是发挥AIGC实践价值的重要前提。从技术角度来看,AIGC擅长管理广泛的数据资产和知识沉淀,因此在一些先发场景中具备确定性的优势。
IDC一项针对全球企业的调研结果显示,知识管理场景是AIGC现在最受组织青睐的应用场景,在搜索、地图、数字人、智能对话、推荐以及业务流程优化等场景中表现出巨大的潜力。

    趋势二

    AIGC正在工具化,从“赶时髦”变“真有用”

    随着大模型的快速迭代成熟,许多行业开始期望大模型能够解决现实问题,带来可持续价值。


    IDC调研结果显示,当前企业就AIGC项目择选供应商合作时,最看重的是项目能否在短期内为企业带来价值。在这样的目标指引下,越来越多的未来场景被描绘出来,大模型应用厂商也在积极开拓行业用户,试图快速打造优质客户的行业领先实践。

    从个人视角看,AIGC正在工具化,而掌握优秀工具的员工将事半功倍,未来对不同环节工作效率的固有认知与评价标准也会有较为明显的改变。


    IDC的调研显示,企业当前最希望通过AIGC来实现的商业目标包括:改善客户体验/服务、提高开发人员生产力、实现差异化竞争优势以及创新商业模式等。


    IDC预测,到2026年,AIGC将承担42%的传统营销琐事,如搜索引擎优化、内容和网站优化、客户数据分析、细分、潜在客户评分和超个性化等。

图片

企业最希望通过AIGC应用实现的商业利益

    但与此同时,IDC调研也表明,企业高层普遍担心AIGC带来的运营成本不可预测、隐私/合规风险以及客户预期管理等有关的不可控局面。此外,相关的技术栈、工具软件、数据集、技能方面的缺失都可能限制企业对AIGC的投入热情。


    因此,大模型的安全可解释以及产品工具的易用性都非常重要,是坚定企业信心、加快场景落地的关键。IDC认为,企业可基于AI PaaS,快速、低门槛地搭建起专属的智能化应用。


    例如,阿里钉钉2023年推出了面向生态伙伴和企业的智能化底座AI PaaS,下接大模型能力,上接用户真实需求,能让大模型的能力进入工作场景并稳定输出。

    趋势三

    专属、自建模型将率先在中大型企业涌现


    企业或组织对于大模型的要求不仅仅是实现“通识”,更需要其成为特定领域的“最强大脑”。


    因此,企业客户会产生越来越多的专属、自建模型需求,特别是一些中大型企业,通过对大模型的领域化适配,有望获得更加理想的综合收益。

    IDC的调研显示:目前有60%的企业使用大模型的公开版本,但2年后会迅速降至17%,而更多的企业会将AI应用建立在私有、专属模型基础上;同时,高达88%的企业选择通过内部团队开发相关应用。

    
    由此可见,行业专属大模型已经成为企业未来的热点目标,企业也要持续建设自己人才队伍,修炼AIGC应用的“内功”。

图片

企业构建专属模型的意愿在增加(现阶段 vs 两年后)

    基于特定任务和特定领域知识训练的专属或垂类模型,对于未来的企业端客户来说是必不可少的。而在打造专属AI能力的过程中,中大型企业基于良好的资金基础和数据沉淀,有望率先构建起专属大模型服务,赋能行业生态和行业客户使用。


    从另一个角度来看,垂直领域的数据、面向场景的模型优化以及高效低成本的工程化解决方案是企业利用AI建立竞争优势的关键。


    IDC预计,到2025年,采用生成式AI驱动的数据智能和集成软件将产生新的自动化数据平台,使数据工程师的生产力至少提高25%。

    趋势四

    多模态大模型塑造“多边形战士”应用

    从GPT-4V的惊艳亮相,到AI视频生成工具Pika 1.0的火爆出圈,再到谷歌 Gemini的“全能AI”,多模态AI都是其中的关键词。


    这源于多模态大模型与生俱来的“魔力”。业界认为,多模态大模型更有利于提升智能化应用中的信息丰富度,其学习能力更强,分析和处理问题的视角更加全面。


    在一些典型AI应用中,多模态大模型显现出极强的可交互性,能帮助开发者与用户精准理解输入信息的上下文关联和隐含信息。而通过对多维度信息的细微捕捉,多模态AI的强化推理能力得到加强,能提升应用场景中的全面性和可靠性。