首页  >  媒体动态  >  媒体动态详情

领创北京 | “超级”显微镜

2024-11-22   北京市科学技术协会   阅读量:616

戴琼海(中)、吴嘉敏(右)和团队成员操作“超级”显微镜

    当一段悦耳的音乐响起,大脑中数以亿计的神经元是怎样迅速活跃起来的?好端端的一个细胞,是如何变异,一步步变成恶性肿瘤的?当病毒侵入人体,免疫系统是如何动员起来打赢健康保卫战的?

    透过“超级”显微镜,这些有关生命活动的奥秘,徐徐揭开。

    近期,中国工程院院士、清华大学自动化系教授戴琼海团队宣布新一代介观活体显微仪器系统“RUSH3D”问世。区别于传统光学显微镜,它拥有前所未有的时空跨尺度成像能力——在连接微观与宏观世界的介观尺度上,首次实现了对哺乳动物活体组织高分辨率、高速、长时间、低光毒性的三维观测,而且几乎不破坏细胞活性。这一突破填补了当前国际范围内对复杂生物过程性研究的观测空白。


    为显微镜冠名“超级”的这条路,戴琼海带领团队走了20多年。


    2001年,清华大学成立成像与智能技术实验室。20多年来,他们基于该平台在介观活体显微成像领域持续深耕,勇闯科研“无人区”,开展了计算摄像、脑科学与人工智能等国际前沿交叉科学的基础理论与关键技术研究。


    如今,10亿像素动态视频采集、活体全脑神经成像、透过皮肤和血管观察细胞……这些“疯狂的想法”,正逐渐成为现实。


01  为显微镜打开“宇宙视角”

    走进位于清华主楼三层的自动化系,提神的咖啡香气扑面而来。刚刚结束一场线上会议的戴琼海步履匆匆地赶到会议室,为记者详解了这项颠覆性研究成果——


    “经过6年持续攻关,我们在介观活体显微仪器‘RUSH’的基础上,终于研发出了新一代介观活体显微镜‘RUSH3D’。它能以20赫兹的高速三维成像速度,实现长达数十小时的连续低光毒性观测。相比目前市场上最先进的商业化荧光显微镜,它在同样分辨率下的成像视场面积提升近百倍,三维成像速度提升数十倍,光毒性大幅降低。”

    与6年前发布的“RUSH”相比,“RUSH3D”新在哪儿?戴琼海从原理讲起:以脑科学为例,大量神经元间的相互连接和作用,让人类涌现出意识,弄清楚神经环路的结构和活动规律,是解析大脑工作原理的必经之路。然而,传统显微镜属于微观视角,虽然具备毫米级视场,但是观测范围较小,只能做到单个平面的神经信号动态记录;功能核磁属于宏观视角,实现了三维全脑范围观测,但空间分辨率低,甚至不能识别单个细胞。

    处于宏观和微观之间的介观尺度,则可以聚焦细胞及细胞间的运动和相互作用。

    作为国际上首台亿像素级介观荧光显微镜,“RUSH”同时兼具厘米级视场与亚细胞分辨率,克服了传统显微镜看不全的缺点,让显微镜看得宽、分得清;“RUSH3D”在此基础上,不仅实现了看得更宽、分得更清,还拍得更快、看得更久。有了这些升级,显微镜就如同打开了“宇宙视角”。

    实验室里,团队正利用新一代显微镜观测活体小鼠大脑的细胞活动。一只小鼠被固定在观测台上,一旁的电脑屏幕上,小鼠全脑神经元活动的三维影像实时变化着,如满天星辰般点点闪耀。

    “这些在血管周围忽亮忽灭的荧光信号,就是小鼠大脑里密密麻麻的神经元。放大图像,每个神经元清晰可见;缩小图像,观测范围可达全脑。”清华大学自动化系副教授、团队成员吴嘉敏说,透过显微镜,能清晰地看到小鼠17个脑区的神经元网络。

    更难得的是,小鼠即使蹬腿乱动,三维影像仍清晰可见,未曾间断。

    许多生命现象难以在体外复现,细胞在活体复杂环境下,往往会呈现更复杂的变化。比如细胞不会一直待在原地不动,像肿瘤细胞就会从原发灶的位置,转移到身体其他部位,而此前显微镜观测技术的最大局限,就是不能实现活体大范围、高分辨率、长时程观测。

    想要在活体状态下追踪细胞的活动,就要解决高分辨率的难题——穿透皮肤细胞,扫除皮肤中水、油脂等造成的散射不均的阻碍,还要穿过血管,在复杂环境中捕捉细胞。难度等同于在巨大的体育馆里追踪几百万甚至几千万个高速运动的乒乓球。

    此外,细胞还会重叠,呈现三维形态并且三维分布,因此大面积、立体式的三维成像也必不可少。在仪器的长时间照射之下,强光可能引发细胞的“高烧”反应,导致细胞无法正常工作,出现大面积死亡,这也被称为“光毒性”。想要长时间观测活体细胞,必须降低光毒性。

    ……

    面对重重难题,戴琼海带领团队开展了持续攻关。传统光学显微镜是为人眼设计的,团队逆向思考,创新性地改变了传统光学成像“所见即所得”的设计理念,用计算编码、计算采集等多维多尺度计算架构,为计算机“读懂”数据设计了一套感知系统,将外部环境因素对观测的影响降到最低。

    他们还开发了数字自适应光学技术,克服光学像差的扰动,降低激光照射对细胞的损伤。


    “RUSH3D”集成了过去6年乃至10多年来一系列的理论和关键技术创新,真正实现了整体性能的颠覆性提升。戴琼海团队先后提出了扫描光场成像原理、数字自适应光学架构、虚拟扫描算法等多个关键理论与技术,相关成果均发表在著名国际期刊上。

    啃下一个又一个“硬骨头”,个中艰辛只有团队成员才能体会。

    就像《桃花源记》里描述的一样,走过幽深的小径,豁然开朗,打开了一个新世界——借助“RUSH3D”这个新工具,科研人员就能看到以往从未见过的世界,研究以前无法解答的问题。

02  从诺贝尔奖里“挖”课题

    自动化系走廊深处的一面墙上,贴满了密密麻麻的科学公式,公式下面有张小纸条,上面写着4个字:欢迎指正。这是戴琼海专门让人贴上去的,目的是提醒实验室所有人,要有挑战权威的勇气。

    原始创新,是团队进步的基石。

    戴琼海很明确,所谓原始创新有3个标准:要改变科学研究的路径、能改变产业发展的方向、可以写进教科书。他要求实验室的师生们,必须思考“图诺问题”——图灵奖和诺贝尔奖级别的问题。

    过去100多年间,有20多项诺贝尔奖与脑科学有关,仅仅在医学影像界,光核磁共振技术就成就了多位诺贝尔奖得主,催生了不少颠覆性研究。

    戴琼海带领团队反其道而行,往“刁钻”的角度扎,寻找奖项中的技术空白。用他的话说:“如果当时在国际上,有超过5个团队正在研究同一个课题,那我们就不必做了!要做就做原创性的研究。”

    于是,戴琼海召集团队成员一起细数历年来成像领域的重大进展。他们发现,1979年诺贝尔生理学或医学奖成果——X射线断层成像仪(CT)以及2003年诺贝尔生理学或医学奖成果——核磁共振成像技术,都有“活体大视场、低分辨率”的特质;而2014年与2017年诺贝尔化学奖成果——超分辨率荧光显微镜与冷冻电镜等均有“离体小视场、高分辨率”的特质。

    而在“活体大视场、高分辨率”的介观尺度领域,世界范围内的科研成果和重大突破寥寥无几。

    以脑科学为例,大量神经元间的相互连接和作用、人类意识的形成、肿瘤发生和变化的全过程……一系列秘密都藏在介观尺度中,一旦突破,将进一步揭开生命活动的奥秘。

    2013年,戴琼海带领团队师生对这项从诺贝尔奖里“挖”来的科研课题发起了猛攻。第一个要解决的难题就是视场和分辨率之间相互制约的固有矛盾。